

 TECHNICAL PAPER

Alvium Convolution Mode

V1.0.0 1

V1.0.0
Jan 2023

Benefits of Alvium on-camera convolution
Image convolution is a versatile image processing tool with a broad variety of use cases. But on a CPU,
the computational cost of image convolution is a major drawback. This applies especially to scenarios
with high frame rates, high image resolution, or large convolution kernels.

The complete Alvium camera product line with GenAPI support features an on-board hardware
convolution engine, enabling 5x5 convolution image processing directly on the camera at full
bandwidth. As of this writing, the Custom Convolution matrix is unique in the market.

The Alvium convolution engine can be controlled in the following modes:

You can apply your own convolution algorithms using a GUI or code.

Image Convolution – technical backgrounds
Mathematically, image convolution is a discrete 2D convolution:

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝜅𝜅 ∗ 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = � � 𝑔𝑔(𝑥𝑥 + 𝑖𝑖, 𝑦𝑦 + 𝑗𝑗) 𝜅𝜅(𝑖𝑖, 𝑗𝑗)
𝑏𝑏

𝑗𝑗=−𝑏𝑏

𝑎𝑎

𝑖𝑖=−𝑎𝑎

Where 𝑓𝑓(𝑥𝑥,𝑦𝑦) is the resulting filtered image, 𝜅𝜅 is a 2D kernel matrix with a size of 𝑚𝑚 = 2𝑎𝑎 + 1 times
𝑛𝑛 = 2𝑏𝑏 + 1 and 𝑔𝑔(𝑥𝑥,𝑦𝑦) is the original image.

Figure 1 shows an example how a single output pixel value is calculated from the input image and
the filter kernel:

V1.0.0 2

Figure 1 Example Convolution

It shows an image convolution with a 3x3 vertical edge detection kernel. Each pixel of the resulting
image is calculated only with the original pixel and its neighbors by multiplication with the corresponding
kernel coefficient. However, every pixel needs to be calculated with the sum of 𝑚𝑚 ∙ 𝑛𝑛 multiplications.
In a simple implementation of a not separable convolution, a source image with a resolution of 𝑋𝑋 ∙ 𝑌𝑌
would therefore lead to a complexity of 𝑂𝑂(𝑋𝑋𝑌𝑌𝑚𝑚𝑛𝑛).

Note: The camera hardware convolution engine provides an efficient real-time solution for
convolution, but it increases the power consumption of the camera.

The figure also shows that the resulting image turns out smaller than the original. This is reasoned in
the missing neighborhood pixel values when the kernel overlaps at the image edges and corners. A
calculation cannot be performed there without further consideration of the problem. Different
strategies for this issue exist. To obtain the original image size in the result we are using a mirroring
approach on the source image.

To perform a 5x5 convolution, 2-pixel rows and columns are mirrored. The 4 pixels in each image corner
are mirrored diagonally. This strategy is inducing a lower error than setting the unknown pixels to zero.
Nevertheless, convolution results at the image edges must be interpreted with care.

The above convolution example results in negative pixel values. This shows that the result of the bare
convolution operation does not necessarily lead to valid images. To achieve valid images a constant e.g.,
128 for 8-bit pixel format, is added if the sum of the convolution kernel 𝜅𝜅 is 0 resulting in a grayscale
image. Otherwise, it is assumed that no change to the average image intensity is intended, and the
convolution kernel is normalized in the following way:

𝜅𝜅′ =
1

∑ ∑ 𝜅𝜅(𝑖𝑖, 𝑗𝑗)𝑏𝑏
𝑗𝑗=−𝑏𝑏 𝑎𝑎

𝑖𝑖,=−𝑎𝑎
𝜅𝜅

V1.0.0 3

Note: Normalization is calculated in the camera. When specifying a kernel matrix, the user is
free to use any integer from -256 to 255 without considering normalization.

Convolution of color images
In many cases, convolution of an RGB image is done by separate convolutions of each color channel.
Because this further increases the computational complexity, we chose another approach for the on-
camera convolution. Generally, the interesting information for image convolution is the brightness
relation to neighborhood pixels, e.g., for enhancing sharpness. The YUV color model is separating this
luminance information in the Y channel from the chroma information. Therefore, the convolution in our
Alvium cameras is done only on the Y-channel and the original chroma values stay untouched. After
applying the convolution, the camera performs the conversion to back to RGB for convenient output
formats.

Note: Kernels which sum up to zero are DC free and removing the luminance information in
uniform areas. It is recommended to use mono pixel format for DC free kernels!

Getting started
Prerequisites
For an easy start with Alvium’s convolution mode, you need:

• Vimba X SDK
• Alvium GigE, USB, or 1800-C CSI2 cameras
• Alvium camera firmware 00.10.00.6c9062b1 or higher

Technically, you can also use the Vimba SDK. However, only Vimba X contains a GUI to easily apply the
desired convolution settings.

Get started
Step 1: Get your camera up and running

• Check the firmware version. If a newer firmware is available, update it.
• Start the Viewer provided with the SDK, acquire some images, and apply the basic camera

settings for your application such as the exposure time. GigE cameras: For best performance,
follow the instructions of the user guide.

Step 2: Use Vimba X Viewer

On the Image Processing tab, you can select the convolution presets or apply a custom convolution
with the matrix.

https://www.alliedvision.com/en/products/software/vimba-x-sdk

V1.0.0 4

 Figure 2 Vimba X Viewer Convolution Widget

The widget enables the user to choose between several presets. These are then loaded in the kernel
matrix widget and can be further edited there. The final values must then be written to the camera.
After this step, the convolution is configured, and the result can be observed by clicking Acquisition
Start. The convolution coefficients are not changeable during acquisition. Kernels written to the camera
can be stored in user sets. Custom presets can be added to the dropdown menu by editing
Convolution_Presets.json which is located in \bin\plugins of the VimbaX installation folder.

Step 3: Use the API

This step is optional, if you want to further develop your custom convolution.

As shown above, the Viewer widget offers a convenient solution for testing convolution kernels. But for
an application, it is most likely necessary to specify the convolution kernel with the API. The way to do
this is using the XML camera feature interface: The CustomConvolutionValue feature represents one
value of the kernel at the position defined by the CustomConvolutionValueSelector Enum feature. The
behavior of it can be tested in the Viewer feature tree. Also, the Enum feature ConvolutionMode needs
to be set to “CustomConvolution” to activate the convolution engine.

The following code example shows how the Vimba X C++ API can be used to load a 5x5 kernel matrix to
the camera.

Note: For sharpening, blur (negative sharpening) and adaptive noise reduction, Allied Vision
provides extra image processing features. These are using the same convolution hardware and
cannot be used simultaneously with a custom convolution.

V1.0.0 5

// Code snippet for specifying a custom convolution kernel with VmbCPP API
#include <iostream>
#include "VmbCPP/VmbCPP.h"
using namespace VmbCPP;

int main()
{
 VmbSystem& system = VmbSystem::GetInstance();
 if (VmbErrorSuccess == system.Startup())
 {
 CameraPtrVector cameras;
 if (VmbErrorSuccess == system.GetCameras(cameras))
 {
 CameraPtr camera = cameras[0];
 if (VmbErrorSuccess == camera->Open(VmbAccessModeFull))
 {
 // Specify Custom Kernel
 int kernel[5][5] = { { 0, 1, 2, 3, 4},
 {10,11,12,13,14},
 {20,21,22,23,24},
 {30,31,32,33,34},
 {40,41,42,43,44} };

 // Get necessary Features
 FeaturePtr pConvolutionValueSelector;
 FeaturePtr pConvolutionValue;
 FeaturePtr pConvolutionMode;
 camera->GetFeatureByName("CustomConvolutionValueSelector", pConvolutionValueSelector);
 camera->GetFeatureByName("CustomConvolutionValue", pConvolutionValue);
 camera->GetFeatureByName("ConvolutionMode", pConvolutionMode);

 // Specify Custom Convolution Mode
 pConvolutionMode->SetValue("CustomConvolution");

 // Set kernel values via camera features
 int n = 0;
 for (int i = 0; i < 5; ++I)
 {
 for (int j = 0; j < 5; ++j)
 {
 pConvolutionValueSelector->SetValue(n);
 pConvolutionValue->SetValue(kernel[i][j]);
 n++;
 }
 camera->Close();
 }
 }
 }
 system.Shutdown();
 return 0;

V1.0.0 6

Some kernels and their effects
The following examples were taken with the custom convolution mode of an Alvium 1800 U 500c in 8bit
mono pixel format. The images are cropped to 640x640 pixels to increase the visibility of the processing
impact. The identity kernel has no effect on the image and is in the following examples shown left as
reference image.

Bluring is done by mixing the pixel values within the pixel Neigborhood. This can be done equally, e.g.
Box Blur or weighted e.g. Gaussian Blur.

Figure 3: Top: 5x5 Gaussian Blur Convolution - Bottom: 5x5 Box Blur Convolution

V1.0.0 7

Contrary to blurring, the image edges can be enhanced using a variety of kernels. One is a sharpening
kernel, increasing the contrast between neighboring pixels. Another option are embossing filters, which
create a 3D effect at edges by applying directional differences.

Figure 4: Top: 3x3 Emboss Convolution - Bottom: 3x3 Sharpening Convolution

V1.0.0 8

The Sobel operator is based on two convolutions which approximate the image derivate in one direction.
This can be used for edge detection. These Kernels are DC free.

Figure 5: Top Sobel Horizontal Edge Convolution - Bottom: Sobel Vertical Edge Convolution

	Benefits of Alvium on-camera convolution
	Image Convolution – technical backgrounds
	Convolution of color images
	Getting started
	Prerequisites
	Get started

	Some kernels and their effects

