

Scope of this document
This document provides information on how to set up a computer vision system with optimal performance
using USB3 Vision devices. This includes some special considerations for the use of multiple cameras with
one host machine.

Introduction to U3V
USB3 Vision (U3V) is an interface standard on top of the USB standard for industrial cameras. As USB has
become the de-facto standard for peripheral devices, this makes it easy to connect cameras to most systems.

USB3.0 introduced the "SuperSpeed" (SS) transfer rate. With a theoretical transfer speed of up to
500 MByte/s, SuperSpeed transfers can deliver large amounts of data in a short time, making it suitable for
many vision applications. This upper limit for the bandwidth given by the specification is an idealized
theoretical value. For real world applications, the actual achievable transfer rate of the host controller should
either be verified in the datasheet of the host controller or be determined by measurements. For the sake of
simplicity, this document will consider SuperSpeed connections to be capable of delivering 625 MByte/s.

As the USB protocol is not specifically designed for the needs of computer vision devices, some limitations
can lead to performance and stability issues: Not the entire theoretical maximum bandwidth of 625 MByte/s
can be used for the transfer of image data. In addition to some overhead that needs to be transferred for
each frame, the communication procedure of USB is host-initiated. Data is transferred from a USB device to
the host system in the form of transfers with a size set by the host. This means the host system actively
requests the transfer of data from a device in blocks of specified sizes. Without this initiation by the host, the
device cannot submit data. If the host is overloaded and does not allow USB devices to transmit their data,
they are unable to send it. Additionally, as USB is a serial protocol, only a single device at a time may use the
bus to transmit data. These limitations may lead to issues further described in section Special considerations
for Multi Camera Setups.

USB Vision systems
For the purposes of this document, a USB Vision system consists of one host system with one or more U3V
devices connected via USB cables. The connections to the host controllers are all assumed to support at least
the SuperSpeed transfer rate. For the host to support SuperSpeed transfers, a suitable host controller must
be installed in the system. This can typically be either an integrated host controller on the motherboard or an
additional PCIe card. When setting up a USB vision system, it is very important to verify that the host
controller can support the required bandwidth for the number of connected devices. For certain cameras
(e.g. large resolution or high-fps devices), the required bandwidth may be as high as the full 625 MByte/s
SuperSpeed transfer rate. We recommend to always leave some headroom in the bandwidth of a connection
to U3V devices to allow for required overhead in the communication that does not directly transfer image
data. Where possible, it is recommended to set up the system in such a way that connections utilize the
SuperSpeed+ transfer rate of 1250 MByte/s, which was introduced with the USB standard 3.1.

When setting up a host system with PCIe host controllers, the bandwidth limitations of the PCIe connection
on the motherboard needs to be considered. Table 1 shows an overview of the supported bandwidth for

Considerations for Setting Up USB Vision
Systems

Document V1.0.1
February 2023

different PCIe versions and the number of lanes. Not all version/lane configurations meet the bandwidth
recommendation for SuperSpeed connections.

Table 1: Overview of PCIe bandwidths

Lanes ↓ Approximated Bandwidth

PCIe versions → 1.0/1.1 2.0/2.1 3.0/3.1

x1 250 MByte/s 500 MByte/s 1000 MByte/s

x2 500 MByte/s 1000 MByte/s 2000 MByte/s

x4 1000 MByte/s 2000 MByte/s 4000 MByte/s

Besides this limitation of the bandwidth available via the PCIe port, some USB host controller cards might
also not be capable of supporting the required USB bandwidth when all ports of the card are used. Keep this
in mind when connecting multiple U3V devices to the same host controller.

Single camera setup
In the simplest case, a single U3V device is connected to the host machine:

Figure 1: Connecting a single U3V device to a host controller

In this simple case, a single USB connection is set up to one U3V device. This allows the device to utilize the
entire bandwidth of the connection.

Provided the host controller can support the required bandwidth, this situation generally provides a stable
streaming experience. It can however be impacted if the host system cannot process the received data
stream fast enough. Depending on the operations performed on each acquired image, it is possible that the
host system is too busy analyzing the acquired data to initiate new transmissions from the U3V device. For
USB devices this issue is especially critical because the communication must always be initiated by the host.
Keeping the system load in consideration is therefore always required and it should be ensured that the
system has some headroom instead of running at full capacity.

Special considerations for Multi Camera Setups
Connecting multiple U3V devices to the same host requires some consideration. While in the simplest case a
direct connection from each device to the host controller is the obvious choice (see Figure 2), many multi
camera setups require additional USB ports. We recommend adding them as PCIe cards (see Figure 3).

Multiple cameras connected to the same host controllers

Some host controllers can support multiple SuperSpeed buses simultaneously. In this case, directly
connecting multiple U3V devices to a single host controller is the best approach to set up a vision system
with multiple devices. This way, each U3V device may utilize the full SuperSpeed transfer rate.

U3V Device

Host Controller

Host System

Figure 2: Connecting multiple U3V devices to the same host controller

The resulting data stream from the devices still shares a connection (e.g. PCIe bus) from the host controller
to the system’s CPU for processing, but as these connections can provide higher bandwidth than a
SuperSpeed connection (see e.g. Table 1), this is preferred over e.g. using a USB hub. Check the datasheet of
the used host controller to verify if it supports multiple independent SuperSpeed buses or root hubs at their
full bandwidth.

Tip
Ensure that the used host controller can support SuperSpeed connections to all
connected devices at the same time.

Adding more host controllers to the system

In some cases, it is possible that a host controller is not capable of supplying the required SuperSpeed
bandwidth for all ports at the same time. If so, it is generally advisable to add more host controllers to the
system. This can for example be done via PCIe expansion cards. It is important to keep in mind though, that
the host system itself must be capable of processing the incoming data quick enough without overloading
the system (ensure CPU load is within reasonable limits).

Figure 3: Adding host controllers to support many U3V devices

Using USB Hubs (not recommended)

The USB protocol also supports connecting multiple devices to a single port on the host controller via USB
hubs. For devices with a high bandwidth requirement like U3V devices this is not recommended as the
bandwidth that is available for each device is strongly limited and the traffic needs to be processed by the
hub instead of being directly transferred to the host controller.

U3V Device

U3V DeviceHost Controller

Host System

U3V Device

U3V Device

U3V Device

U3V Device

Host Controller

Host ControllerHost System

Figure 4: Using a USB hub to connect many U3V devices (not recommended – see Figure 3 instead)

In Figure 4 all U3V devices are connected to a single USB hub, which is connected to the host controller. The
connection from the host controller to the USB hub must carry the data from all connected U3V devices.
Since the connection is limited to a USB transfer rate (for simplicity, here a 625 MByte/s SuperSpeed
connection), each U3V device cannot rely on receiving a full SuperSpeed transfer rate. Instead, the devices
need to share the bandwidth of that single connection from the hub to the host controller leading to a
bottleneck. In such a configuration, the data transfer rate of the U3V devices must be drastically limited to
not overload the USB connection. While the devices generally provide several settings to adjust the required
bandwidth (see section How to adjust required bandwidth), this configuration may still run into issues even if
appropriate bandwidth limitations are set for each device.

Average vs. burst bandwidth use

As a first approximation on the required bandwidth of a U3V device, a constant number seems reasonable. A
number of frames of a given size needs to be transferred in a given time. Transferring, for example,
20 frames per second with a resolution of 2464 × 2064 pixels and pixel format Mono8 (8 bits per pixel),
requires a bandwidth of:

1
byte
pixel

⋅ (2464 ∙ 2064)
pixel

frame
 ⋅ 20

frames
second

 ≈ 102
MByte
second

This calculation only includes the payload size. To consider the overhead of USB communication as well as
leave some headroom for other control channel communication (e.g. reading and writing camera features),
the value is increased by 20% for the sake of this example. This results in an estimated required bandwidth of
120 MByte/s to use the device at the given configuration. This estimate makes it seem like it should be
possible for up to four devices to share a single SuperSpeed connection via a USB hub. If multiple devices
were able to send data at this reduced bandwidth simultaneously, transmission would work as expected.

But since USB is a serial communication protocol, this simultaneous data transfer of multiple devices via the
same connection is not possible. A USB hub is needed to connect multiple USB devices to the same port on a
host controller (see Figure 4). If multiple U3V devices record frames simultaneously (for example, if multiple
devices are triggered by the same hardware signal), they will not be able to transfer the acquired frames
immediately. Instead, the host must initiate transfers for each device. The corresponding device will then
send the requested amount of data using all available bandwidth as quickly as possible in a burst. After this
transmission, it must hold all remaining data it was not able to send yet in some buffer. If the device does not
have an internal buffer big enough to store the remaining data, it is possible that the transmission fails
because the host does not retrieve the frame data quick enough from the device before the next frame is
acquired and overwrites the existing data in memory.

If instead the number of devices is split up over multiple host controllers (see Figure 3), the frame transfer
becomes much easier. Each host controller needs to support fewer devices and transfers from devices to
different host controllers can take place in parallel. This allows for a larger number of devices to work
reliably, improving the stability of the entire system.

U3V Device

U3V Device

U3V Device

U3V Device

Host Controller

Host System
USB hub

How to adjust required bandwidth
Several approaches are possible to control how much bandwidth is required to stream image data from a
U3V device. Some of these can be adjusted as camera settings, others change the format of transferred data.

DeviceLinkThroughputLimit

U3V devices provide the feature DeviceLinkThroughputLimit. It reduces the maximum bandwidth of the data
streamed from the device. It directly influences other camera features like the acquisition frame rate. It is
the simplest method of directly adjusting the required bandwidth of a U3V device.

By default, the camera may be set to a low value, to allow for very reliable data transmission. For higher
performance, increasing the value of this feature allows the camera to use more bandwidth for its data
transfer. It is however not recommended to always set this feature to its maximum value. Instead, some
headroom should be left in the bandwidth of the USB connection. Typically, around 350000000 Byte/second
(350 Mbyte/s) is a good starting point to find a suitable value for the used system setup.

Adjusting the frame rate

Transmitting more frames per second results in a higher bandwidth requirement. Limiting the number of
frames acquired by the device is possible by enabling the AcquisitionFrameRate camera feature and setting a
fixed value for it, or using hardware triggering to record frames. However, keep in mind, that not only the
number of frames acquired but their respective timing can also impact stream stability (see section Average
vs. burst bandwidth use).

Selecting a pixel format

The pixel format affects the required bandwidth. Some pixel formats provide multiple channels to transmit
color data (e.g. RGB8 vs. Mono8) or they provide a higher bit-depth (e.g. Mono16 vs. Mono8). For some pixel
formats and camera models, it is possible to transmit the image data in a compact format to the host system.
Two examples where this is possible are color images, or images with bit-depths that are not aligned to 8 bit
boundaries.

Calculating colors on the host

Devices supporting color formats such as RGB8 generally record the color information by utilizing a bayer
pattern on the sensor. If the camera transmits the acquired image as an RGB image to the host, it first
debayers the acquired sensor data to determine the intensity for the R, G, and B channels of the image and
transmits that data. This takes (for an 8-bit image) 3 channels × 1 byte/channel = 3 byte of data per pixel.
Alternatively, it is also possible to transmit the non-debayered sensor data and perform the debayering on
the host. This greatly reduces the amount of data that needs to be transferred from device to host, but
requires additional system resources on the host for debayering.

Packing high bit-depth data

Another case where bandwidth may be saved is when recording images with higher bit-depths. Some U3V
devices support recording pixel intensity with a bit-depth between 9 and 15 bit (i.e. not aligned to 8 bit
boundaries). For these bit-depths, cameras may provide multiple pixel formats. In the case of e.g. 10 bit
resolution, these would be named Mono10 or Mono10p. The names of these formats follow the Pixel
Format Naming Convention (PFNC). In the Mono10 format, the intensity for each pixel is transmitted as a
16 bit field, where the unused bits are zero-padded. By contrast, the packed equivalent Mono10p does not
pad the transmitted data. This reduces the amount of data that needs to be transferred, as the 0 bits that
are used for padding no longer need to be transmitted for every pixel. As further image processing likely
requires pixel data to properly align with 8 bit boundaries, unpacking of the frame data might be necessary
on the host system, requiring additional resources.

Our Vimba SDK contains the Image Transform Library, which transforms images received via Vimba APIs into
common packed and unpacked image formats. You can choose between several debayering algorithms.

General tips
Some settings for our U3V devices are by default set to conservative values. Adjusting them for optimal
performance on your specific system can lead to better performance than the default values. Some available
settings have already been described in section How to adjust required bandwidth. The following sections
describe additional settings that may be adjusted to improve performance on some systems.

USB Transport Layer MaxTransferSize and MaxTransferCount
In USB communication, the host can specify the size of each individual transfer. By choosing a larger transfer
size, a bigger payload can be submitted with each transfer. This reduces the overhead associated with the
frame transmission and allows a U3V device to write out larger amounts of data at a time instead of having
to split it up into many small transfers. Depending on the operating system and hardware, it is even possible
to select a transfer size that is large enough to transmit the payload for an entire frame in a single transfer.

The MaxTransferSize setting of the USB Transport Layer is defined in the VimbaUSBTL.xml configuration file.
It controls the upper boundary for the size of USB transfers. Increasing its value can improve the stream
stability, but the results strongly depend on the used system. On some systems it may be possible to set a
MaxTransferSize value large enough to submit the entire image data in one USB transfer. The size of the data
that is being transmitted can be read from the devices PayloadSize feature.

The setting MaxTransferCount affects the number of transfer requests handed over to the OS at a time. This
queue of requests serves as buffer not only for the currently ongoing data transfer, but also to bridge times
when the OS switches to other processes in a multi-tasking environment. In the general case, the default
value for this setting is a good choice, but in a scenario with a weak system like a small embedded board and
a high number of active threads or tasks, an increased number of queued transfers can contribute to a more
stable stream and fewer incomplete frames.

Increasing USBFS buffer size (Linux only)
On most modern Linux systems, support for USB devices is implemented via usbcore and made available to
the user via USBFS. By default, the memory space reserved for USB operations is set to a low value (usually
16 MByte). When transferring larger amounts of data, it is first received with the help of memory from that
small buffer, and if required moved to some other location in memory to make room for further transfers. As
the size of this buffer is so small, it is not suitable for the large amounts of data that are being transmitted by
U3V devices. Increasing the USBFS memory buffer size is strongly recommended.

The current size of the USBFS buffer can be read from the USBFS directly with the following command:

cat /sys/module/usbcore/parameters/usbfs_memory_mb

Temporarily Increasing the USBFS memory buffer size
Writing a different value to that file adjusts the size of the USBFS buffer until the next reboot of the system.
The following command will set it to a value of 1024 MByte (sudo is used here to indicate that root privileges
are required for this):

sudo sh -c 'echo 1024 > /sys/module/usbcore/parameters/usbfs_memory_mb'

Permanently Increasing the USBFS memory buffer size

Tip
Before changing the bootloader configuration, create a backup of your system. A
faulty bootloader may prevent your system from booting. A fix might require an
external boot media or reinstallation of the system. Changing the bootloader
configuration is done at your own risk.

To increase the buffer size permanently, add the kernel parameter usbcore.usbfs_memory_mb=1024 to the
bootloader configuration. How to do this depends on the bootloader used by your system.

GRUB 2

1. Open /etc/default/grub

2. Replace: GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" (or other contents within the quotation
marks depending on your system) with: GRUB_CMDLINE_LINUX_DEFAULT="quiet splash
usbcore.usbfs_memory_mb=1024"

3. Update grub: sudo update-grub

4. Reboot the system.

Syslinux

1. Open /boot/extlinux/extlinux.conf

2. Add usbcore.usbfs_memory_mb=1024 to the APPEND line

3. Reboot the system.

Other bootloaders

To configure additional kernel parameters of other bootloaders, please see the manual of your bootloader.

Cables
The widespread adoption of USB as an interface technology results in great availability of accessories like
cables. Unfortunately, not all cables fulfill the high requirements of U3V devices. It must be ensured that the
cable supports at least SuperSpeed connections. Screw-lockable USB cables are recommended to ensure a
robust and reliable connection. Cable lengths should be kept as short as possible as longer cables can
introduce more noise into the signal or may cause a voltage drop that can result in power issues for the U3V
device.

Summary
USB3 Vision is a mature standard used in many productive vision systems. For simple setups, the plug and
play experience of USB makes it very easy to try out devices and start development. When systems become
more complex and require multiple cameras, things become more complicated because of the design of the
USB technology itself. It must be considered how devices are connected to the host system to prevent
bottlenecks and optimized device configurations might be necessary to allow a reliable data transfer. The
large number of involved components, from operating system to drivers and hardware implementations of
the host controllers, mean that different systems might show subtle differences in behavior and therefore
require different settings to function in a stable manner. U3V provides several options to tweak a system
setup for best performance. This makes U3V a great option to setup scalable vision systems from simple
single camera solutions to very complex multi-camera applications. If you have further questions, please
contact us.

	Scope of this document
	Introduction to U3V
	USB Vision systems
	Single camera setup
	Special considerations for Multi Camera Setups
	Multiple cameras connected to the same host controllers
	Adding more host controllers to the system
	Using USB Hubs (not recommended)
	Average vs. burst bandwidth use

	How to adjust required bandwidth
	DeviceLinkThroughputLimit
	Adjusting the frame rate
	Selecting a pixel format
	Calculating colors on the host
	Packing high bit-depth data

	General tips
	USB Transport Layer MaxTransferSize and MaxTransferCount
	Increasing USBFS buffer size (Linux only)
	Temporarily Increasing the USBFS memory buffer size
	Permanently Increasing the USBFS memory buffer size
	GRUB 2
	Syslinux
	Other bootloaders

	Cables

	Summary

